淮阴工学院华洪波教授学术报告

发布者:王丹琼发布时间:2021-11-01浏览次数:340



报告题目:Relating the total domination number and the annihilation number of some graphs

报告人:华洪波,淮阴工学院数开云·电竞(中国)官方网站教授

报告时间:2021 11 02 日(星期二)上午 09: 00

腾讯会议:548590295

报告摘要:The total domination number $\gamma_{t}(G)$ of a graph $G$ is the cardinality of a smallest vertex subset $D $ of  $V(G)$ such that each vertex of $G$ has at least one neighbor in $D$. The annihilation number $a(G)$ of $G$ is the largest integer $k$ such that there exist $k$ different vertices in $G$ with degree sum of at most the size of $G$. It is conjectured by W. J. Desormeaux et al. that $\gamma_{t}(G)\leq a(G)+1$ holds for every nontrivial connected graph $G$. The conjecture has been proved for graphs with minimum degree at least 3, trees, tree-like graphs, block graphs and cacti. In this talk, we introduce some of our results on the above conjecture.


报告人简介:华洪波,博士,博士后,淮阴工学院教授,硕士生导师,校学术委员会委员,数学学科负责人。先后被遴选为江苏省“青蓝工程”优秀青年骨干教师培养对象, 淮安市“533”人才工程拔尖人才培养对象及江苏省“青蓝工程”中青年学术带头人培养对象。目前担任中国工业与应用数学学会图论组合及应用专业委员会委员。先后主持国家自然科学基金面上项目2项,主持完成江苏省高校自然科学基金面上项目及中国博士后科学基金面上项目各1项,参与完成国家自然科学基金2项及省基金1项。迄今为止,共发表SCI论文60余篇。



欢迎老师和同学们参加!


 

返回原图
/