报告题目1:From discrete nonlocal NLS equation to nonlocal NLS equation
报告时间:2019.10.22 15:00-16:00
报告地点:一楼报告厅
朱佐农教授简介:朱佐农教授现任上海交通大学教授,目前主要从事孤立子与可积系统方面的研究。
报告摘要:In this talk, we will focus on the topic that from discrete nonlocal nonlinear Schrodinger equation to nonlocal nonlinear Schrodinger equation.
报告题目2:Application of algebraic curves in integrable systems
报告时间:2019.10.22 16:00-17:00
报告地点:一楼报告厅
报告人:耿献国 教授
耿献国教授简介:博士,二级教授,博士生导师,主要从事可积系统及应用方面的研究。现任郑州大学学科特聘教授—学科方向带头人,中国工业与应用数学会理事,河南省数学会理事长。美国《数学评论》(Mathematical Reviews)评论员。国务院政府特殊津贴专家,河南省优秀专家。2003年被评为河南省特聘教授,2016年获河南省科技进步二等奖。2012年获全国百篇优秀博士学位论文指导老师,所带领的研究团队2016年被评为河南省可积系统及应用研究创新型科技团队。2005年2月至2017年3月任数学与统计学院院长, 中国数学会十届和十一届理事。
报告摘要:Resorting to the characteristic polynomials of Lax matrixes for the soliton hierarchies, we introduce the corresponding algebraic curves, including the hyperelliptic curve, trigonal curve, and tetragonal curve. We study the calculation of genus of algebraic curve, properties at infinity, and the construction of three kinds of Abel differentials. We establish the corresponding Baker-Akhiezer functions and meromorphic functions. The straightening out of various soliton flows is exactly given through the Abel map and Abel-Jacobi coordinates. Using the theory of algebraic curves, we obtain the explicit Riemann theta function representations of the Baker-Akhiezer function and the meromorphic function. As an illustration, we arrive at algebro-geometric solutions of the entire Satsuma-Hirota coupled hierarchy.