报告题目:Exhaustive existence and non-existence results for some prototype polyharmonic equations
报告人:叶东教授
报告时间:12月13日下午2:00-3:00
报告地点:四教105
报告摘要:We will consider polyharmonic equations $\Delta^m u = \pm u^p$ in ${\mathbb R}^n$ for all $n, m \in {\mathbb N}^*$ and $p \in {\mathbb R}$. We study the existence of entire positive and/or non trivial nonnegative solutions. In each case, we provide necessary and sufficient conditions on the exponent $p$ to guarantee the existence of such classical solutions in ${\mathbb R}^n$. This is a joint work with Q.A. Ng\^o, V.H. Nguyen and Q.H. Phan.
报告人简介:1990年毕业于武汉大学数学系中法数学实验班,1994年获得法国卡尚高师数学博士,师从Frédéric Hélein教授,1994年至2008年任职于法国Cergy-Pontoise大学,2008-2018年法国洛林大学教授,2018年9月法国洛林大学、华东师范大学教授。