报告题目:广义Sine-Gordon方程的可积半离散化
Integrable semi-discretization for a generalized sine-Gordonequation
报告时间:2018年11月20日10:30-11:30
报告地点:开云·电竞(中国)官方网站二楼会议室
报告人:虞国富教授
报告人简介:虞国富教授,2007年6月博士毕业于中国科学院数学与系统科学研究院; 加拿大蒙特利尔大学博士后。现为上海交通大学数学科学学院教授、博士生导师。主要从事孤立子与可积系统、特殊函数、正交多项式方面的研究。在国外重要学术刊物上发表SCI论文30余篇。主持国家自然科学基金、上海市晨光计划、上海交通大学晨星青年学者奖励计划等多项研究课题。应邀多次访问香港科技大学、香港浸会大学。
报告摘要:
In this talk, two integrable and one non-integrable semi-discrete analoguesof a generalized sine-Gordon (sG) equation are constructed. The key of theconstruction is the bilinear forms and determinant structure of solutions ofthe generalized sG equation. We also construct N-soliton solutions for the semi-discrete analogues of the generalized sGequation in the form of Casorati determinant. In the continuous limit, we show that the semi-discrete generalized sG equations converge to the continuousgeneralized sG equation. Numerical simulation is conducted by use of the resulted semi-discreteschemes. The work is collaborated with Bao-Feng Feng.