王稳地教授、赵洪涌教授学术报告

发布者:张栋邦发布时间:2017-05-08浏览次数:284

报告一

报告题目:Mathematical modeling and analysis of bacteria-phage interactions in a chemostat(恒化器中细菌-噬菌体相互作用的数学建模分析)

报告时间:2017511日上午9:00-10:00

报告地点:开云·电竞(中国)官方网站二楼会议室

报告摘要: I first talk about the importance of phage therapy in fighting bacteria infections and review the advances of mathematical modeling in the study of phage dynamics. Then, I introduce our researches on how immune responses affect the outcomes of phage therapy. It is shown that the host immune response induces the backward bifurcation. Thus, there exists the bistability of phage-free equilibrium with the phage-infection equilibrium. More importantly, it is found that the model exhibits the coexistence of a stable phage-infection equilibrium with a stable periodic solution. The crucial implication of these phenomena is that phage infection fails both from the smaller dose of initial injection and from the larger dose of initial injection. Thus, a proper design of phage dose is necessary for phage therapy. Further analysis indicate that the inhibition effects of bacteria and phages can induce periodic oscillations and modulated oscillation.

人:王稳地,西南大学教授。博士毕业于西安交通大学,重庆市名师,享受国务院特殊津贴,中国生物数学学会副理事长,重庆市应用数学学科带头人,现任International Journal of Biomathematics编委和Journal of Biological systems编委。研究方向为生物数学和应用动力系统. 主持(完成或在研)国家自然科学基金课题5项,教育部项目2项。SIAM J. Appl. MathJDE, J. Math. Biol. 等杂志发表论文100多篇.


报告二


报告题目:Dynamics of the delayed reaction-diffusion population models(时滞反应扩散种群模型的动力学

报告时间:2017511日上午10:00-11:00

报告地点:开云·电竞(中国)官方网站二楼会议室

报告摘要:This talk mostly includes two sections as follows: (1) I will give a delayed stage structured diffusive prey-predator model, by using the theory of partial functional differential equations, the local stability of a interior equilibrium is established and the existence of Hopf bifurcations at the interior equilibrium is also discussed. (2) Considering a diffusive plant invasion model with delay under the homogeneous Neumann boundary condition, the qualitative properties, including the existence and uniqueness of a nonnegative solution, persistence property, and local asymptotic stability of the constant steady states are obtained. In some special cases, I investigate the system’s discontinuous bifurcation. The numerical results show that diffusion can make the system unstable and increasing delay may cause the plant extinction.

人:赵洪涌南京航空航天大学教授,博士生导师。长期从事时滞微分方程动力学、网络传播动力学与控制、神经网络优化与图像处理、生物系统动力学等研究。江苏省高校“青蓝工程”优秀青年骨干教师和中青年学术带头人20142016年,连续三年入选爱思唯尔中国高被引学者榜单2016年入选南京航空航天大学“校园年度人物获省自然科学优秀论文二等奖1项、江苏省高校科技成果二等奖1项、南京航空航天大学科技成果三等奖1项;2016年,获南京航空航天大学“群星”创新奖。主编教材1国家自然科学基金通讯评议专家教育部学位与研究生教育发展中心博士学位论文学位论文特邀评议专家;主持国家自然科学基金2项,参与1项;主持省级基金两项. 已在SCI刊物上发表学术论文60SCI刊物引用2000余次现为中国自动化学会会员,TCCT随机系统控制委员会委员,第八届中国生物数学学会理事





返回原图
/