学术报告:线性模型中的多变点检测程序

发布者:王丹琼发布时间:2016-12-14浏览次数:181

线性模型中的多变点检测程序

A multiple change-point detection procedure in a linear model


报告时间:2016年12月19日(周一)下午15:00-14:00

报告地点:开云·电竞(中国)官方网站二楼会议室


人:史晓平,2002年毕业于重庆大学应用数学本科专业,2008年获得中国科学技术大学概率统计硕士学位, 随后赴加拿大约克大学攻读统计博士学位并于2011年获得博士学位,紧接着在多伦多大学从事博士后研究,随后分别在约克大学和圣弗朗西斯·格扎维埃大学任教,2016年加入坎卢普斯大学至今担任助理教授职务,主要从事分布的鞍点近似,复合似然推断,变量选择,基于图论方法的变点检测,以及图像的去噪。


AbstractA change point refers to a location or time at which observations or data obey two different models: before and after. These studies of change-point problems have found applications in a wide range of areas, including quality control, finance, environmetrics, medicine, genetics and geography. We propose a procedure for detecting multiple change-points in a mean-shift model. We first convert the change-point problem into a variable selection problem by partitioning the data sequence into several segments. Then, we apply a modified variance inflation factor regression algorithm to each segment in sequential order. When a segment that is suspected of containing a change-point is found, we use a weighted cumulative sum to test if there is indeed a change-point in this segment. Two real data examples including a barcode image and a genetic dataset are illustrated for change-point detection.


返回原图
/