报告题目:一类拟周期强迫微分方程的稳定与混沌动力学(Stable and Chaotic Dynamics in CertainQuasi-Periodically Forced Differential Equations)
报告时间:2016年10月16日(周日)上午13:30-14:30
报告摘要:In this talk we study the complicateddynamics of quasi-periodically perturbed ordinary differential equations with ahomoclinic orbit to a dissipative saddle point. We show that there are fourregions of parameters in which the equations have respectively: (1) attractingquasi-periodic integral manifolds of Levinson type; (2) transition to chaos;(3) strange attractors; (4) homoclinic tangles. In the case of homoclinictangles, we not only obtain the results on horseshoes similar to the existingones, but also give a comprehensive geometric description of the structures oftangles.
报告人简介:吕克宁教授,美国杨伯翰大学数学系终身教授、博士生导师,研究方向为无穷维动力系统和随机偏微分方程等。2005年获得中国国家杰出青年科学基金(B类)。美国《J. Differential Equations》等国际著名学术期刊编委,在世界数学一流杂志《Invent. Math.》、《Memoirs of AMS》、《Commun. Pur. Appl. Math》、《Transactions of AMS》等上发表多篇研究论文。